茴

Timesheet Template v3.1.xlsm

Timesheet Notes v3.1.xlsx

Version 3.1 Update

March 2022

$W R$

Outline

- Engineering Calcs \& Revision Package
- Current Timesheet / Timings
- Field Info - Speed Limits, Grades, Crosswalks
- Turning Paths (W \& D) for Red Clearance Calcs
- DeIDOT Timesheets for Controller Entry
- Siemens m60 Series Advanced Traffic Controller
- Intersection Information and Notes
- Basic Timing Parameters
- Preempt \& Priority Operation
- Flashing Red Arrow
- Signal Timing Quick Introduction
- CMS Analysis
- MAX Timers

Field Work

- Approach Grades
- Measure maximum approach downgrade within AASHTO stopping sight distance
- Only downgrades should be used in yellow interval calculation
- Speed Limit Sign Photos
- Clear photos showing all approach speed limit sign with location context
- Photograph the closest sign to the intersection (still on approach)
- If no sign is posted, typically assume 25 MPH (50 MPH on some unposted rural roads)

- Crosswalk Distances
- Measure the distance from truncated domes to truncated domes for each crosswalk (or edge of curb if no domes)
- Existing Timings
- via TMC
- Existing timesheet (EOPS or scan)
- Vehicle/Ped basic data from Tactics (if possible)

Timesheet Calculations

- Signal permit number
- On system: yes
- Location: "official" DeIDOT signal name, typically from existing timesheet and typically not changed
- Your name and the reviewer's name
- Phase numbers and movements of each active phase
- Existing yellow times: of the existing movement (i.e., if phasing is changing)
- Approach speed limits
- Approach grade: Input to nearest 0.1 if negative, 0 if positive (positive grades can be entered but will not impact calculated yellow times
- W and D for each phase (indicate if W is a left-turn)

Timesheet Calculations

Pedes dearance (PED CLR) for majoc-street movements reduced by duration of yellow and all-red intervals; Ф2 PED CLR $=18 \mathrm{sec}-7 \mathrm{sec}$ (yellow + red) $=11 \mathrm{sec} ;$ (65 PED $C L R=18 \mathrm{sec}-7 \mathrm{sec}$ (yellow + red) $=11 \mathrm{sec}$ Ped dearance (PED CLR) for minor-street movements reduced by duration of yellow and all-red intervals: \$4 PED $C L R=22 \mathrm{sec}-7 \mathrm{sec}($ yellow + red $)=15 \mathrm{sec}$

- Passage Time used for new signals only (input distance from passage loop to stop line)
- Volume Density calculations not used
- Field-measured crosswalk distances
- EXT PCL codes (extended ped clear)
- $0=$ countdown ends at end of Green/beginning of Yellow (Most countdown ped signals, except some in City of Newark)
- 1 = countdown ends at end of All Red/beginning of next Green (Rare)
- 2 = countdown ends at end of Yellow/beginning of All Red (Noncountdown ped signals)

W and D

- For each phase, find the worst-case (highest R) combination of:
- W - phase that is ending
- D - possible conflicting movement
- Suggestion for organization W (clearing path) shown with arrow; D (conflicting path) not
- Calculate all-red time

$$
R=W \frac{W}{1.47 * S_{10}}-0.283 \sqrt{D}
$$

- Consider any conflicting phase that could follow (typically, any phase can be skipped except ø2 and ø6)
- Plot the diagram to PDF and paste a screenshot to the "W and D" sheet

Speed Limit Photo Sheet

SPEED LIMIT PHOTOS
Signal Name: DE99@ Main St

EB DE 99 (phase 2) north of 2nd St (about 0.1 miles west of Main St)

COMPLETE FOR ALL PHASES

Phase	Speed Limit Sign Present?	Road Name	Location	Distance from Signal (miles, to nearest 0.1)
	Yes	DE 99	north of 2nd St	0.1
	Yes	DE 99	north of South Ave	1.3
	No	Main St		
	Yes	Main St	west of DE 12	0.5

Resize photos to fit in large center cell.
Photos should show the speed limit clearly and provide some context to the sign's location. To keep file size down, screenshot the speed limit photos rather than inserting the files here.

- Provide documentation of current posted speed limits on all approaches used to calculate yellow and red intervals
- When there is no approach speed limit posted, typically assume 25 MPH
(neighborhoods, driveways, parking lots, downtown areas, some ramps)
- Use engineering judgement for higher-speed off-ramps (consider advisory speed) and unposted rural roads (state law - 50 MPH)

LANE CONFIGURATION							
	Lonly	L/T	Tonly	T/R	R Only	L/T/R	L / R
NB						1	
SB	1	1		1			
EB	2		2		1		
wB	1		2		1		

PHASING						
	L Only	Thru	Split	Bikes	Excl. Ped	Dummy
NB			3			
SB			4			
EB	5	2				
WB	1	6				

Phase | Min |
| :---: |
| Green |

Yellow \begin{tabular}{c|ccccccc}
All Red

 volume

Lane

Factor

Critical

Volume

Vehicles

per

"Cycle"

Green

Required
\end{tabular}

NOTES:
" x " if rights are to be excluded

"CYCLE LENGTH"

- ONE OPTION to check max timers (or provide a CMS file)
- MAX timers used for "free" operation, operation during signal errors, and coordination-type force-offs
- Represent the maximum green time a phase can have
- Steps for engineering:
- Input peak hour volumes
- Note lane configuration
- Exclude rights if they have a dedicated turn lane, and especially if they are channelized ***ENGINEERING JUDGEMENT***
- Establish signal phasing
- Input minimum green times and existing max timers (from existing timesheet)
- Adjust "cycle length" to match total (active feedback provided)
- More information available starting on slide 22

Sequence of Operations

- Details exactly how the signal progresses through a cycle, light by light
- Can leave for reviewer/TMC to complete if unsure
- Create the arrow diagram of signal phasing
- Black = protected, gray = permissive/flashing
- Dashed lines are pedestrian phases
- Show correct number of lanes/lane configuration
- Assign each signal head a number
- Follow signal plan
- Include pedestrian heads as well
- Progress through each light sequence
- Green \rightarrow Yellow \rightarrow Red
- Walk \rightarrow Flashing Don't Walk \rightarrow Don't Walk
- Assign colors for flash operation
- Yellow for main street thru
- Red for side street and main street lefts
- Off for peds

Indicate type of signal head for each number

- List preemption phasing (see later slide)

Cover Page

INTERSECTION TIMESHEET COVER PAGE

PROJECT NOTES
NSTALL EPAC CONTROLLER M60 VERSION 3.58 + +
3 YELLOW TIME CHANGE PHASES $1,2,4,5 \& 6$ TO 5.0 SECONDS
4 PLACE PHASES $1,3,4 \& 5$ TO NON-LOCKING
5 ADJUST PREEMPT
*** BLUE = User Input

- Revision: Increase letter when making operational changes (add/remove phase/ped, convert to m60), increase number when making timing changes (update yellows/reds/ped times)
- Letter and number CANNOT both increase
- Project Number: Applies if conversion is done as part of a design contract (i.e. T202012345)
- Controller Type: Specify which controller model will be in the cabinet after completion (field-check or EOPS)
- Existing Signal: Type of signal currently
- Conversion to: Signal type after completion ("No Change" typically)
- Mode of Operation:
- \quad Coordinated $=$ runs patterns $24 / 7$
- Coordinated \& Free = some combination of the two
- Free 24/7 = never runs patterns
- Coordination Zone: https://tmc. deldot.gov/datamap/ or ask TMC if unsure
- Existing signals: "Signal Patterns" level \rightarrow Click on signal of interest \rightarrow Group
- Coordination Settings: How the signal operates in various situations
- Typically copy from existing settings \rightarrow Ask TMC/reviewer if unsure
- Preferences: Coordination = Yield, Max. = Max 2 (Max 1 if Free), Correction = SW, Offset = Beg. Grn
- Check all applicable signal characteristics
- Yellow Trap Modified: for 5-section left turns and FRA (both directions) - check DeIDOT guidance for additional situations
Project Notes: describe the changes in the revision package, used more like a "checklist" of things for the installer to edit or adjust (see notes list)
- Timesheet Requested by: Indicate section whose work requires the new timesheet
- Required Data: Check all items that have been done, give a reason why anything hasn't or doesn't need to be done
- Speed limits, grades, and red clearance paths should always be done
- Crosswalk distance must be done unless there are no crosswalks
- Can ignore Vehicle Recall/Locking Memory if unsure(reviewer and TMC will address)
- Timesheet Package Requirements: Do not complete; will be completed by reviewer
- Timesheet Tracking: who will review this timesheet?
- TR-50 = New Castle signals
- TR-66 = Kent/Sussex signals
- The remaining 4 are always included

RSA

Thse 2

-velew (zav), wrods to the off DELur ume input
-velew (zav), wrods to the off DELur ume input

$-\begin{array}{c}\text { Ret (2a) is } \\ \text { tister) }\end{array}$

 .artap C (phases 6 traing overipe)

Hev sise.
sed I inved to Sch phaseo 110vac cupput

Sheets hidden by default. Will print if needed by TMC.

INTERSECTION TIMESHEET PACKET NOTICE TO PROCEED

- Signal information auto-populated from the timesheet calculations sheet
- Reach out to TMC for System Communications info. If unable to, TMC can complete

- ***ALL UNUSED PHASES MUST HAVE ALL ZEROS HERE
- DO NOT USE/OK TO USE: For TMC use only
- Phase/Direction/Location:
- Help clarify which movements are assigned to which phases
- Use LT or RT for turn phases
- Use route number for the thru movement, if applicable (DE, not SR)
- Use road name (if it doesn't fit, use a clear abbreviation)
- Business names for signalized entrances are acceptable
- MIN GRN (Minimum Green): Typically 15 for major street thru phases, 5 otherwise
- PASS/10 (Passage): Copy from existing timesheet (for new signals: left turns $=30$, side streets $=40$, main thru phases comes from calculation on Timesheet Calcs tab)
- MAX 1 \& 2: Copy from existing timesheet unless "Max Timer Calcs" sheet shows updated max green times are warranted
- VEH RCL (Vehicle Recall Mode): Copy from existing timesheet

	N. LOCK \& MISC +
NL MEM	1
2 ENTRY	0

SPEC. SEQUENCE +								
OMIT	2	0	0	0	6	0	0	0
-YEL	0	0	0	0	0	0	0	0
OCAL	4	0	0	0	4	0	0	0
						Signa	mber:	N999

- ***ALL UNUSED PHASES MUST HAVE ALL ZEROS HERE
- PED RCL (Ped Recall Mode): Copy from existing timesheet, usually 0
- WOFF/10 (Walk Offset): Time for a leading ped interval (used only for LPI)
- INITIAL (Initialization):
- 4 = green, major street thru phases
- 1 = red, all other phases used
- $0=$ not initialized, unused phases
- Copy from existing timesheet
- NL MEM (Non-Locking Memory):
- Usually set all used phases to 1 (TRUE) except coordinated phases (initial = 4)
- If video detection is used, all used phases must be 0 (FALSE)
- 2 ENTRY (Dual Entry):
- Copy from existing timesheet $-0=$ FALSE, 1 = TRUE
- SPEC. SEQUENCE: Only when both directions have pm+pt or FRA left-turn phasing
- OMIT: opposing coordinated phase

DeIDOT - OCAL: side street phase that gets a "soft" call

UNIT DATA
OVERLAP DATA

DELAY/10: 0

 \begin{tabular}{l|l|l|l|l|l|l|l|l|}

PERM PHASES: \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

PROT PHASES: \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

\hline \& -PED PHASES: \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

\hline OVERLAP \& A \& B \& C \& D \& E \& F \& G \& H

\cline { 2 - 8 } \& PERM OVERLAPS \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

 PROT OVERLAPS: 0

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline
\end{tabular}

FLASHING LEFT -TURN NOTES (AS NEEDED)

*** OVERLAP BOXES CHANGE BASED ON INPUTS IN "OVERLAP LOCATION"

IF MORE THAN 4 OVERLAPS NEEDED, DISCUSS WITH TMC / REVIEWERS
DelDOT

- FRA must be placed on Overlap A/C, if applicable
- DELAY/10: solid red arrow time before flashing begins
- usually 150 for FRA's, 0 for FYA's
- Include "BIKE" in label if it is a bike FYA
- "PERM PHASES": when arrow flashes
- "PROT PHASES" : when arrow is solid green
- Ped phases should be placed as follows:
- ø2 on Overlap A
- ø4 on Overlap B
- ø6 on Overlap C
- $\quad 8$ on Overlap D
- Ped phases do not get assigned overlap information
- Vehicle phase overlaps (i.e. signalized right turn) may be placed on any available overlap
- Overlap location is the movement where the overlap is placed (i.e. NB RT)
- TRL GRN is used for trailing overlaps (i.e. 7second trailing) - 0 otherwise
- YEL/10 and RED/10 should match the last phase where the overlap is active
- If A-D are filled, use unused phases (via notes). Overlaps E-H are last resort.

UNIT DATA
OVERLAP DATA

DELAY/10: $\frac{0}{0}$

	PHASE	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{8}$	$\mathbf{8}$							
PHASES:	0	0	0	0	0	$\mathbf{1}$	0	0
	0					1		

PERM PHASES:	0	0	0	0	0	1	0	0
PROT PHASES:	0	0	0	0	1	0	0	0

PED PHASES: 0

OVERLAP:	A	B	C	D	E	F	G	H
PRRM OVERLAPS:	0	0	0	0	0	0	0	0

FLASHING LEFT -TURN NOTES (AS NEEDED)

1	LT IS FLASHING RED ARROW LEET TURN OPERATION
2	LT HAS A 15-SECOND DELAY PRIOR TO FLASHING
3	LT ST MONIORED ON BOTH SCR 1 ANDD OVLP A SCR
4	LT (BIKE) IS FLASHING YELLOW BIKE SIGNAL
5	LT (BIKE) HAS A O-SECOND DELAY PRIOR TO FLASHING

6 LT (BIKE) IS MONITORED ON BOTH SCR 5 AND OVLP C SCR
RING STRUCTURE

CONTROLLER	RING	NXT PHASE	CONCUR PHASE	1	2	3	4	5	6	7	8	
PHASE 1			STANDARD	\square								
PHASE 2				\square								
PHASE 3				\square								
PHASE 4				\square								
PHASE 5				\square								
PHASE 6				\square								
PHASE 7				\square								
PHASE 8				\square								
							Signa	1 Pe	mit	Num	ber:	N999

- Flashing Left Turn Notes:
- Input time of day restrictions as needed in blue-shaded entry box
- Ring Structure:
- "STANDARD" in most cases
- "PED HAWK" or "FIRE HAWK" when a HAWK signal
- "NON-STANDARD" when not following standard NEMA phasing
- Complete "Ring" and "Nxt Phase" columns
- Check appropriate boxes

m50/m60 Preempt and Priority

m60 PREEMPT DATA PAGE

PREEMPT INTERVAL TIMES						
	$\underset{1}{\text { PREEMPT }}$	$\begin{gathered} \hline \text { PREEMPT } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEMPT } \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEMPT } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEMPT } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { PREEMPT } \\ \hline \end{gathered}$
MIN GRN	5	5	5	5		
MIN WALK DWELL GRN	10	10	5	5		
EXT PED	0	0	0	0		
SELECT PED CLR	26	26	26	26		
SELECT RED/10	20	20	20	20		
TRACK GRN						
TRACK PED CLR TRACK YEL/10	60	60	60	60		
TRACK RED/10	20	20	20	20		
RETURN PED CLR	60			60		
RETURN RED/10	20	20	20	20		

PREEMPT VEHICLE STATUS						
	$\begin{gathered} \text { PREEMMTT } \\ 1 \end{gathered}$	PREEMMPT 2	$\begin{gathered} \text { PREEMMPT } \\ 3 \end{gathered}$	$\begin{gathered} \text { PreEMMPT } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEMMPT } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEIMPT } \\ 6 \\ \hline \end{gathered}$
TRACK GRN DWELL	$\begin{array}{r} 12 \times 34 \\ x \\ x \\ x \\ \hline \end{array}$		$\begin{array}{r} \hline 1213{ }^{4} \\ x \\ 5678 \\ \hline \end{array}$	$\begin{array}{lll\|} \hline 1 & 2 & 314 \\ x & \\ 5 & 6.7 & 8 \\ \hline \end{array}$	$\begin{aligned} & 1234 \\ & 5678 \end{aligned}$	$\begin{aligned} & 1234 \\ & 5678 \end{aligned}$
PREEMPT PEDESTRIAN STATUS ** ${ }^{\text {+ }}$ NOT USED**						
PREEMPT OVERLAP STATUS						
	$\begin{gathered} \text { PreEIMIPT } \\ 1 \end{gathered}$	$\begin{gathered} \text { PREEMPT } \\ 2 \end{gathered}$	PREETMPT 3	$\begin{gathered} \hline \text { PrEEEVIPT } \\ 4 \\ \hline \end{gathered}$	PREEMMPT 5	$\underset{6}{\substack{\text { PREEIMPT } \\ 6}}$
TRACK STATUS DWEL StATUS			A $=0$ $C=0$ $=0$ $=0$	$\begin{array}{ll}=0 & \\ =0 & =0 \\ =0 & 0\end{array}$		
CYCLE STATUS						

- Preempt = High Priority (emergency vehicles)
Priority = Low Priority (transit vehicles)
- Opticom detector triggered by vehicle and signal transitions to service that phase ("DWELL")
- Once preempt/priority call is released, controller will "exit" to service next phase ("EXIT PHASE")
- Assigning Exit Phases:
- $\varnothing 2 / \varnothing 6, \varnothing 1 / \varnothing 6, \varnothing 2 / \varnothing 5$ exits to ø2/ø6
- $\varnothing 3 / \varnothing 8, \varnothing 4 / \varnothing 7$ exits to $\varnothing 4 / \varnothing 8$
- $\quad 4 / \varnothing 8$, $\varnothing 4$ exits to first phases in cycle
- $\varnothing 3$ exits to $\varnothing 4$

m50/m60 Preempt and Priority

m60 PREEMPT DATA PAGE

PREEMPT VEHICLE STATUS						
	$\begin{gathered} \text { PrEEMMPT } \\ 1 \end{gathered}$	PreEMMPT 2	$\begin{gathered} \text { PREEMMPT } \\ 3 \end{gathered}$	$\begin{gathered} \text { PreEMMPT } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEMMPT } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEIMPT } \\ 6 \\ \hline \end{gathered}$
TRACK GRN DWELL	$\begin{array}{r} 12 \times 34 \\ x \\ x \\ x \\ \hline \end{array}$	$5 \frac{x}{6178}$	$\begin{array}{r} 12133^{4} \\ X \\ 5678 \\ \hline \end{array}$	$\begin{aligned} & \hline 12314 \\ & \\ & 5 \\ & 5 \quad 7 \quad 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1234 \\ & 5678 \end{aligned}$	$\begin{aligned} & 1234 \\ & 5678 \end{aligned}$
PREEMPT PEDESTRIAN STATUS **NOT USED**						
PREEMPT OVERLAP STATUS						
	$\begin{gathered} \text { PREEMMPT } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { PREEMMPT } \\ 2 \end{gathered}$	$\begin{gathered} \text { PREEMMPT } \\ 3 \end{gathered}$	$\begin{gathered} \text { PreEIMPT } \\ 4 \end{gathered}$	$\begin{gathered} \hline \text { PREEMMPT } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PREEIMPT } \\ 6 \\ \hline \end{gathered}$
DWELL STATUS				$\begin{array}{llll}\text { A } & =0 & B & =0 \\ C=0 & 0 & =0\end{array}$		
$\begin{gathered} \text { CYCLE STATUS } \\ \text { TRAll } \\ \hline \end{gathered}$						

- Assigning Preempts ("DWELL") -

- Preempt 1:
- $\varnothing 1 \& \varnothing 6$ (if $\varnothing 1$ is Prot-Only)
- ø2 \& ø6 (if ø1 is Prot/Perm, FRA, Omitted)
- Preempt 2 :
- $\varnothing 2 \& \varnothing 5$ (if $\varnothing 5$ is Prot-Only)
- $\varnothing 2$ \& $\varnothing 6$ (if $\varnothing 5$ is Prot/Perm, FRA, Omitted)
- Preempt 3:
- $\varnothing 3$ \& $\varnothing 8$ (if $\varnothing 3$ is Prot-Only)
- $\varnothing 4 \& \varnothing 8$ (if ø3 is Prot/Perm, FRA, Omitted)
- $\varnothing 3$ (if Split Phased)
- Preempt 4:
- $\varnothing 4 \& \varnothing 7$ (if $\varnothing 7$ is Prot-Only)
- $\varnothing 4$ \& ø8 (if $\varnothing 7$ is Prot/Perm, FRA, Omitted)
- $\varnothing 4$ (if Split Phased)

m50/m60 Priority Data Page

- CO-PHASE:
- The same as Preempt Vehicle "DWELL" except turn phases are not considered
- i.e. $\varnothing 2 / \varnothing 6$ on Preempt 1 instead of $\varnothing 1 / \varnothing 6$
- PHS OMIT: the exact opposite of COPHASE (auto-populated)
- RECOVERY PHASES: always the coordinated phases (auto-populated)

m40/300-Series Priority Data Page

- Included if m40/300-Series controller is used
- Sheet is hidden by default and is autopopulated using previous m60 sheets, so no need to fill it out
- Will be printed by TMC if needed

Intersection Notes

INTERSECTION NOTES

- Generally, this page describes characteristics of the signal operation/equipment or to reinforce/clarify non-standard settings
- Sets of commonly used notes are available in a separate excel file
***Do not complete the "Detector Page" sheet - it is the field sheet for the installer

Signal Phasing Basics

National Electrical

Manufacturers Association (NEMA) standard
> Major street thrus - Ø2 \& Ø6
> DeIDOT - Ø2 is NB or EB
> Barriers separate major and minor street movements

- Ped phases share a phase number with

Protected Phase
Permissive Phase
Pedestrian Phase the nearest parallel thru phase
Terminology:
Protected-only
Protected-permissive

, Concurrent
Split
DeIDOT

Critical Movement Summation

- Use hour-long turning movement count data
- Also called Critical Lane Volume (CLV) analysis
- Determines how much conflicting volume must be "served" to clear the intersection
- Signal phasing, number of lanes and lane assignment all factor into the calculation

$$
800+500=1, \mathbf{3 0 0}
$$

Critical Movement Summation

- If a movement has more than one lane provided, a lane factor is applied:

Lanes	Factor
1	1.00
2	0.55
3	0.40
4	0.30

This accounts for slightly less-than-ideal lane usage (e.g., $55 \% / 45 \%$ volume split in two lanes vs. even $50 \% / 50 \%$ split)

$$
800(0.55)+500=940
$$

Critical Movement Summation

- Within a single phase:

$(800+200)(0.55)+200+500=1,250$
> If two movements share a lane, their volumes are added prior to applying a lane factor motorists will typically occupy available lanes evenly if possible
> If exclusive lanes are provided, only the maximum lane volume is included in the summation - these movements clear at the same time, so the critical volume is whichever movement takes the longest to clear

Critical Movement Summation

- But...be aware:

- A shared lane could be "filled" by one of the shared movements, where it effectively functions as an exclusive lane(s)
> Make sure to apply lane factors prior to "comparing" different movements using the same phase

Critical Movement Summation

- Right turns are included in the

- Typically, right turns with an exclusive right-turn lane are excluded from the analysis
- Engineering judgement can be used in some scenarios to include all or part of a right-turn volume:
, No Turn on Red restriction
, Very short right-turn storage
, Extremely high volume
$(800+200+300)(0.55)+200+500=\mathbf{1 , 4 1 5}$ summation if they are in a shared lane

Exclusive phase provided (or overlap phase)

Critical Movement Summation

$$
400+800+200+500=\mathbf{1 , 9 0 0}
$$

- Typical major-street operation example:
, Many movements can overlap/happen concurrently (e.g., NBL can go with SBL or NBT without being in conflict)
> Two pairs of movements do conflict and typically occur sequentially:
- NBL followed by SBT
- SBL followed by NBT
- Whichever phase "pair" has the largest critical volume are the "critical phases"
- $200+900=1,100$
- $400+800=1,200$

Critical Movement Summation

- Concurrent example:
> When no (or only one) left-turn phases are provided, conflicting movements can operate within the same phase or concurrent phases
> Standard practice is to add "opposing left" volume to the phase being analyzed
- For example, EBT would clear followed by WBL yielding to the EBT
- Shared lanes can introduce some uncertainty
- Worst case would be all lane volume is "blocked" behind yielding lefts
- Typically, bypassing is possible or left volume is low enough that blocking is uncommon
- Level of service (LOS) can be approximated based on total critical volume
> Only recommended as a "ballpark" estimate (i.e., the intersection is likely below/near/over capacity)
- Does not replicate/replace delay \& LOS estimates from modeling software

LOS	Critical Movement Volume
A	Less than $1,000 \mathrm{veh} / \mathrm{hr}$
B	1,000 to $1,150 \mathrm{veh} / \mathrm{hr}$
C	1,151 to $1,300 \mathrm{veh} / \mathrm{hr}$
D	1,301 to $1,450 \mathrm{veh} / \mathrm{hr}$
E	1,451 to $1,600 \mathrm{veh} / \mathrm{hr}$
F	More than $1,600 \mathrm{veh} / \mathrm{hr}$

- Knowing each phase's critical volume as a percent of the intersection's critical volume can help to assign phase split times as a percent of the full cycle length
, Does not account for signal timing parameters (minimums, change/clearance intervals)
. No way to pinpoint proper cycle length

Using CMS in Practice

Typical cycle lengths to consider:
$60,75,90,100,120,150$

Greenshields'
Model

Phase	Movement	Volume	Lane Factor	Critical Volume	Vehicles Per Cycle	Green Required	Min Green	Clearance $(Y+R)$	Total Split	Critical Movement

Foulk Rd

| 1 | SB L | 116 | 1.00 | 116 | 4 | 12 | 5 | 5.0 | 17 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | NB | 456 | 0.55 | 251 | 8 | 21 | 10 | 7.0 | 28 | |
| 5 | NB L | 93 | 1.00 | 93 | 3 | 10 | 5 | 5.0 | 15 | ${ }^{*}$ |
| 6 | SB | 666 | 0.55 | 366 | 12 | 29 | 10 | 7.0 | 36 | $*$ |
| Shipley Rd | | | | | | | | | | |

3	EB L	106	1.00	106	4	11	5	5.0	16	*
4	WB	491	1.00	491	16	38	5	6.0	44	*
7	WB L	20	1.00	20	1	5	5	5.0	11	
8	EB	407	1.00	407	14	32	5	6.0	38	
Totals				1056				23	111	

Analysis covered to this point Relates volumes to signal timings

Required time to clear vehicles per above cycle length; Should be \leq cycle

Using CMS in Practice

- Recommend split times for implementation based on CMS required splits

Phase	Movement	Total Split	Critical Movement	120 " SB
				Foulk 17
1	SB L	17		
2	NB	28		43
5	NB L	15	*	15
6	SB	36	*	45
3	EB L	16	*	16
4	WB	44	*	44
7	WBL	11		11
8	EB	38		49
Totals		111		120

> Typically, assign time to critical phases first, then fill out rest of phases
> In this example, "extra time" was all allocated to phase 6; phases 3, 4, and 5 were not given more than needed per CMS
> Occasionally, protected/permissive phases are a good place to "cheat" time when assigning splits since some vehicles can turn on permissive
> Also remember that unused minor phase split time is "returned" to coordinated phases (typically)
. Make sure min times are covered!

Minimum Split Times

- All phases have minimum vehicular programmed split:
- PH MIN VEH SERV = MIN GRN + YELLOW + ALL-RED + 1 (extra second for coordination purposes)
- Pedestrian phases have minimum service times:
> Coordinated phase with ped phase
- PH MIN PED SERV = WALK + PED CLR + YELLOW (if EXT PCL = 0) + ALL-RED + 1 (extra second for coordination purposes)
- Split times MUST cover ped phases for coordinated movements
- Minor phase with ped phase
- PH MIN PED SERV = WALK + PED CLR + YELLOW (if EXT PCL = 0) + ALL-RED
- Split times do not need to cover minor movement ped phases, but consideration for frequency of actuation/number of pedestrians served should be taken into account when deciding to cover or not cover a ped phase

Thank you!

Questions?

Contacts:

Steve Harr WRA
sharr@wrallp.com

Kevin Konzelman WRA
kkonzelman@wrallp.com

